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ARTICLEINFO ABSTRACT

A"tifle Type: This narrative review explores the transformative role of artificial intelligence (AI) in critical care
Review nephrology, focusing on the early detection, risk prediction, and management of acute kidney injury

(AKI) and the optimization of renal replacement therapies in intensive care settings. Drawing from
Article History: recent valid-indexed studies, the review highlights AT’s ability to enhance clinical decision-making
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through advanced machine learning models that predict AKI onset hours to days before traditional
biomarkers indicate injury. The integration of explainable AI frameworks improves clinician trust
and fosters personalized treatment strategies. Additionally, AT applications in continuous renal
replacement therapy (CRRT) facilitate individualized dosing and timing, reducing complications
and supporting better outcomes. Challenges in data quality, ethical considerations, and clinical
implementation are discussed, alongside future directions such as multi-modal data integration
and adaptive learning systems. The review underscores AI’s potential to bridge intensive care and
nephrology, ultimately aiming to improve patient prognosis in critically ill populations.
Keywords: Artificial intelligence, Machine learning, Deep learning, Critical care, Intensive care
unit, ICU, Acute kidney injury, AKI, Chronic kidney disease, Kidney diseases, Renal replacement
therapy, Dialysis

Implication for health policy/practice/research/medical education:

This study’s clinical implications emphasize the transformative potential of artificial intelligence (AI)-driven tools in critical care
nephrology, offering earlier and more accurate detection of acute kidney injury (AKI) that enables timely, targeted interventions
to reduce patient morbidity and mortality. The incorporation of explainable AI models enhances clinician confidence and
supports personalized treatment plans based on individual risk profiles. Additionally, AI facilitates optimization of continuous
renal replacement therapy (CRRT), improving dosing precision and safety, which can reduce complications. Successful clinical
application depends on overcoming challenges like data quality, ethical concerns, and integrating Al systems seamlessly into
workflows. Multidisciplinary collaboration and education are essential to ensure AI augments clinicians’ expertise effectively.
Overall, AT promises to significantly improve critical care outcomes in kidney disease, advancing precision medicine and patient
prognosis in intensive care settings.

Please cite this paper as: Abniki M, Amirdosara M, Zangi M. Al-driven innovations in intensive care nephrology; bridging
intensive care and kidney diseases. ] Nephropharmacol. 2026;15(1):e12820. DOI: 10.34172/np;j.2025.12820.

Introduction

Acute kidney injury (AKI) complicates up to 60% of
intensive care unit (ICU) admissions and remains a
major driver of in-hospital morbidity and mortality due
to delayed detection by conventional markers such as
serum creatinine and urine output (1). Recent advances
in artificial intelligence (AI) offer promising avenues to
overcome these limitations by leveraging machine learning
and deep learning models trained on high-dimensional
electronic health record data to predict AKI onset up
to 48 hours in advance (2,3). Moreover, Al-enhanced

continuous renal replacement therapy (CRRT) platforms
dynamically adjust dose and timing based on real-time
physiologic parameters, optimizing solute clearance while
minimizing hemodynamic instability (4). Explainable
Al frameworks, including Shapley additive explanations
and integrated gradients, further facilitate clinician trust
by elucidating key predictive features such as creatinine
trajectories and vasopressor requirements (1,4). This
narrative review synthesizes valid-indexed literature
on Al-driven innovations in critical care nephrology,
highlighting applications in early AKI detection,
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prognostication, CRRT optimization, and forthcoming
directions for clinical integration and adaptive learning
systems.

Search strategy

The literature search for this narrative review was conducted
in the valid databases (Scopus, Web of Science, Embase,
Cochrane Library, Science Direct, DOA]J [Directory of
Open Access Journals], CINAHL [Cumulative Index
to Nursing and Allied Health Literature], and Google
Scholar search engine), focusing on articles published
till October 2025, to capture the most recent advances
in AT applications in critical care nephrology. The search
combined keywords and MeSH terms related to Al
techniques (artificial intelligence, machine learning, deep
learning, neural networks), intensive care settings (critical
care, intensive care unit, ICU), and nephrology-specific
conditions and interventions (acute kidney injury, AKI,
chronic kidney disease, kidney diseases, renal replacement
therapy, dialysis). Boolean operators (AND, OR) were
used to link these terms. Limitations included the use of
human studies only and the exclusion of animal studies.

Background on critical care nephrology

Critical care nephrology has emerged as a specialized
discipline addressing the complex interplay between AKI
and multiorgan dysfunction in critically ill patients, with
AKlTaffectingupto 50% of ICU admissionsand significantly
increasing mortality and length of stay (5). Early
recognition and management of AKI are paramount, as
delayed intervention correlates with poorer renal recovery
and higher healthcare costs (6). The CRRT represents the
cornerstone of renal support in hemodynamically unstable
patients, offering hemodynamic stability and precise fluid
removal, yet its optimal prescription remains challenging
due to variable patient responses (5,7). Innovations
in biomarker research and predictive modeling have
facilitated risk stratification, while multidisciplinary
collaboration among nephrologists, intensivists, and
nursing staff is critical for tailoring therapies to individual
physiological needs (1). Moreover, pediatric critical
care nephrology underscores unique anatomical and
developmental considerations, necessitating age-specific
protocols to improve outcomes in younger populations
(8). Together, these advances underline the evolving role
of critical care nephrology in delivering precision-based
renal support within the ICU (5).

Al for early AKI detection and prediction

Using Al has significantly advanced the early detection
and prediction of AKI, addressing a critical challenge in
clinical care where traditional biomarkers, such as serum
creatinine, lag behind kidney damage. Machine learning
models leveraging large, multimodal electronic health
record (EHR) datasets demonstrate promising sensitivity
and specificity in forecasting AKI hours to days before

clinical diagnosis, enabling earlier intervention (9). Deep
learning architectures like Long Short-Term Memory
networks enhance temporal prediction by modeling
dynamic patient data streams such as urine output and
blood pressure trends (10). Recent meta-analyses report
Al prediction models achieving pooled sensitivities
around 77% and specificities near 75%, reflecting clinically
meaningful diagnostic accuracy (9). Explainability
frameworks integrated into models help build clinician
trust, supporting real-time decision-making in intensive
care units (11). Despite promising retrospective
validations, prospective studies are limited, and challenges
remain in standardizing datasets, overcoming algorithmic
bias, and ensuring model generalizability across diverse
populations (12,13). Pediatric-specific AI applications
show potential for tailored AKI prediction in vulnerable
neonatal groups, underscoring the importance of age-
specific data incorporation (14,15). Overall, Al-enabled
early AKI detection represents a transformative approach
toward proactive kidney care, with ongoing research
needed for bedside implementation and evaluation of
impact on patient outcomes.

Static versus dynamic models

o Static risk scores: Traditional models using baseline
clinical data (e.g., preoperative variables) demonstrate
moderate predictive performance (area under the
curve [AUC] ~0.70) (16).

e Dynamic machine learning (ML) models:
Incorporating time-updated variables from EHRSs,
dynamic models using recurrent neural networks and
gradient boosting achieve AUCs up to 0.97 for AKI
severity staging (3).

e Ensemble methods: Boosted decision trees and
random forests achieve early AKI prediction up to 48
hours in advance with AUCs of 0.85-0.90 (17).

Comprehensive reviews and meta-analyses studies

A systematic review and meta-analysis of 95 ML models
for AKI risk classification reported pooled AUCs of 0.82
for internal validation and 0.78 for external validation,
highlighting logistic regression, neural networks, and
XGBoost as prevalent approaches (18). Meta-analysis
of novel biomarkers combined with ML further
improved early detection, with urinary neutrophil
gelatinase-associated lipocalin and tissue inhibitor
of metalloproteinases-2 x insulin-like growth factor-
binding protein-7 (TIMP-2xIGFBP7) integrated into Al
algorithms, yielding diagnostic odds ratios >13 (19).

Pediatric and specialized cohorts

Explainable ML models in critically ill pediatric cohorts
achieved robust AKI prediction while providing
interpretability through feature importance, facilitating
clinician trust (20). In liver transplantation, serum
cystatin C-based ML models predicted postoperative AKI
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onset with high discrimination (21).

Al in prognostication and mortality prediction

Several Al-driven mortality prediction models trained
on AKI cohorts report superior performance compared
to traditional scoring systems. Broad learning system and
elastic net final models both achieved pooled AUCs of
0.852 for in-hospital mortality prediction (22). In acute
pancreatitis—associated AKI, XGBoost outperformed
logistic regression (AUC 0.941 vs. 0.85), indicating
applicability across subpopulations (23).

Al-enhanced RRT optimization
Timing and modality selection

o Early versus late CRRT initiation: Reinforcement
learning algorithms analyze real-time hemodynamic
trends and biochemical markers to propose optimal
windows for initiating CRRT, which may reduce both
the duration of renal replacement therapy and ICU
length of stay (24).

e Dose titration: Reinforcement learning models
dynamically adjust CRRT dosing by continuously
evaluating solute clearance and hemodynamic stability,
enabling precise maintenance of targeted fluid balance
while minimizing risks such as hypotension. This
approach provides adaptive, personalized therapy that
responds to the patient’s evolving physiological state,
surpassing traditional static dosing regimens. Such
Al-driven dose titration could improve treatment
efficacy, reduce complications, and enhance overall
outcomes in the intensive care setting by guiding
clinical decision-making with real-time data analysis
(25-27).

Continuous versus intermittent therapies

Deep learning systems leveraging multimodal ICU data
suggest when to transition between continuous and
intermittent RRT, balancing solute clearance against
cardiovascular tolerance (1).

Explainable AI and clinical integration
Interpretability frameworks

o Integrated Gradients: Applied to recurrent neural
networks, this method attributes risk predictions to
specific variables, enabling clinicians to understand
model drivers (3).

e Shapley additive explanations: Used in tree-based
models to quantify individual feature contributions,
highlighting  predictors like serum creatinine
trajectory, vasopressor dose, and inflammatory
markers (23).

Implementation challenges
e Data quality and standardization: Heterogeneity
in EHR systems and missing data impede model

generalizability  (13).

Al innovations in ICU nephrology

o Workflow integration: Embedding AI tools into ICU
dashboards requires seamless interoperability, user
training, and real-time computational resources (28).

e Regulatory and ethical considerations: European
conformity (CE) marking of the NAVOY AKI
algorithm exemplifies progress toward clinical
deployment, yet wider regulatory frameworks and
bias mitigation remain priorities (28).

Future directions and research gaps

e Multi-modal data integration: Fusion of imaging,
genomics, and continuous physiologic signals
promises richer phenotyping and personalized
intervention  strategies.

e Adaptive learning systems: Online learning
algorithms that update with new data can maintain
performance despite evolving clinical practices and
patient populations.

e FEthical frameworks: Development of standardized
guidelines for AI transparency, accountability, and
patient consent to ensure trust and equity.

e Multi-institutional validation: Large-scale prospective
trials are needed to confirm efficacy and safety in
diverse ICU settings, including resource-limited
environments (13).

Conclusion

Al-driven innovations are transforming critical care
nephrology by enabling earlier AKI detection, accurate
prognostication, and optimized RRT. Despite promising
performance demonstrated in retrospective and proof-of-
concept studies, translation into routine clinical practice
necessitates robust validation, explainable frameworks,
and integrated workflows. Collaborative efforts among
clinicians, data scientists, and regulators will bridge
intensive care and nephrology, improving patient
outcomes in critically ill populations.
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