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Implication for health policy/practice/research/medical education:
This study’s clinical implications emphasize the transformative potential of artificial intelligence (AI)-driven tools in critical care 
nephrology, offering earlier and more accurate detection of acute kidney injury (AKI) that enables timely, targeted interventions 
to reduce patient morbidity and mortality. The incorporation of explainable AI models enhances clinician confidence and 
supports personalized treatment plans based on individual risk profiles. Additionally, AI facilitates optimization of continuous 
renal replacement therapy (CRRT), improving dosing precision and safety, which can reduce complications. Successful clinical 
application depends on overcoming challenges like data quality, ethical concerns, and integrating AI systems seamlessly into 
workflows. Multidisciplinary collaboration and education are essential to ensure AI augments clinicians’ expertise effectively. 
Overall, AI promises to significantly improve critical care outcomes in kidney disease, advancing precision medicine and patient 
prognosis in intensive care settings.
Please cite this paper as: Abniki M, Amirdosara M, Zangi M. AI-driven innovations in intensive care nephrology; bridging 
intensive care and kidney diseases. J Nephropharmacol. 2026;15(1):e12820. DOI: 10.34172/npj.2025.12820.

This narrative review explores the transformative role of artificial intelligence (AI) in critical care 
nephrology, focusing on the early detection, risk prediction, and management of acute kidney injury 
(AKI) and the optimization of renal replacement therapies in intensive care settings. Drawing from 
recent valid-indexed studies, the review highlights AI’s ability to enhance clinical decision-making 
through advanced machine learning models that predict AKI onset hours to days before traditional 
biomarkers indicate injury. The integration of explainable AI frameworks improves clinician trust 
and fosters personalized treatment strategies. Additionally, AI applications in continuous renal 
replacement therapy (CRRT) facilitate individualized dosing and timing, reducing complications 
and supporting better outcomes. Challenges in data quality, ethical considerations, and clinical 
implementation are discussed, alongside future directions such as multi-modal data integration 
and adaptive learning systems. The review underscores AI’s potential to bridge intensive care and 
nephrology, ultimately aiming to improve patient prognosis in critically ill populations.
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Introduction
Acute kidney injury (AKI) complicates up to 60% of 
intensive care unit (ICU) admissions and remains a 
major driver of in-hospital morbidity and mortality due 
to delayed detection by conventional markers such as 
serum creatinine and urine output (1). Recent advances 
in artificial intelligence (AI) offer promising avenues to 
overcome these limitations by leveraging machine learning 
and deep learning models trained on high-dimensional 
electronic health record data to predict AKI onset up 
to 48 hours in advance (2,3). Moreover, AI-enhanced 

continuous renal replacement therapy (CRRT) platforms 
dynamically adjust dose and timing based on real-time 
physiologic parameters, optimizing solute clearance while 
minimizing hemodynamic instability (4). Explainable 
AI frameworks, including Shapley additive explanations 
and integrated gradients, further facilitate clinician trust 
by elucidating key predictive features such as creatinine 
trajectories and vasopressor requirements (1,4). This 
narrative review synthesizes valid-indexed literature 
on AI-driven innovations in critical care nephrology, 
highlighting applications in early AKI detection, 
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prognostication, CRRT optimization, and forthcoming 
directions for clinical integration and adaptive learning 
systems.

Search strategy
The literature search for this narrative review was conducted 
in the valid databases (Scopus, Web of Science, Embase, 
Cochrane Library, Science Direct, DOAJ [Directory of 
Open Access Journals], CINAHL [Cumulative Index 
to Nursing and Allied Health Literature], and Google 
Scholar search engine), focusing on articles published 
till October 2025, to capture the most recent advances 
in AI applications in critical care nephrology. The search 
combined keywords and MeSH terms related to AI 
techniques (artificial intelligence, machine learning, deep 
learning, neural networks), intensive care settings (critical 
care, intensive care unit, ICU), and nephrology-specific 
conditions and interventions (acute kidney injury, AKI, 
chronic kidney disease, kidney diseases, renal replacement 
therapy, dialysis). Boolean operators (AND, OR) were 
used to link these terms. Limitations included the use of 
human studies only and the exclusion of animal studies. 

Background on critical care nephrology
Critical care nephrology has emerged as a specialized 
discipline addressing the complex interplay between AKI 
and multiorgan dysfunction in critically ill patients, with 
AKI affecting up to 50% of ICU admissions and significantly 
increasing mortality and length of stay (5). Early 
recognition and management of AKI are paramount, as 
delayed intervention correlates with poorer renal recovery 
and higher healthcare costs (6). The CRRT represents the 
cornerstone of renal support in hemodynamically unstable 
patients, offering hemodynamic stability and precise fluid 
removal, yet its optimal prescription remains challenging 
due to variable patient responses (5,7). Innovations 
in biomarker research and predictive modeling have 
facilitated risk stratification, while multidisciplinary 
collaboration among nephrologists, intensivists, and 
nursing staff is critical for tailoring therapies to individual 
physiological needs (1). Moreover, pediatric critical 
care nephrology underscores unique anatomical and 
developmental considerations, necessitating age-specific 
protocols to improve outcomes in younger populations 
(8). Together, these advances underline the evolving role 
of critical care nephrology in delivering precision-based 
renal support within the ICU (5). 

AI for early AKI detection and prediction
Using AI has significantly advanced the early detection 
and prediction of AKI, addressing a critical challenge in 
clinical care where traditional biomarkers, such as serum 
creatinine, lag behind kidney damage. Machine learning 
models leveraging large, multimodal electronic health 
record (EHR) datasets demonstrate promising sensitivity 
and specificity in forecasting AKI hours to days before 

clinical diagnosis, enabling earlier intervention (9). Deep 
learning architectures like Long Short-Term Memory 
networks enhance temporal prediction by modeling 
dynamic patient data streams such as urine output and 
blood pressure trends (10). Recent meta-analyses report 
AI prediction models achieving pooled sensitivities 
around 77% and specificities near 75%, reflecting clinically 
meaningful diagnostic accuracy (9). Explainability 
frameworks integrated into models help build clinician 
trust, supporting real-time decision-making in intensive 
care units (11). Despite promising retrospective 
validations, prospective studies are limited, and challenges 
remain in standardizing datasets, overcoming algorithmic 
bias, and ensuring model generalizability across diverse 
populations (12,13). Pediatric-specific AI applications 
show potential for tailored AKI prediction in vulnerable 
neonatal groups, underscoring the importance of age-
specific data incorporation (14,15). Overall, AI-enabled 
early AKI detection represents a transformative approach 
toward proactive kidney care, with ongoing research 
needed for bedside implementation and evaluation of 
impact on patient outcomes.

Static versus dynamic models
•	 Static risk scores: Traditional models using baseline 

clinical data (e.g., preoperative variables) demonstrate 
moderate predictive performance (area under the 
curve [AUC] ~0.70) (16).​

•	 Dynamic machine learning (ML) models: 
Incorporating time-updated variables from EHRs, 
dynamic models using recurrent neural networks and 
gradient boosting achieve AUCs up to 0.97 for AKI 
severity staging (3).​

•	 Ensemble methods: Boosted decision trees and 
random forests achieve early AKI prediction up to 48 
hours in advance with AUCs of 0.85–0.90 (17).

Comprehensive reviews and meta-analyses studies
A systematic review and meta-analysis of 95 ML models 
for AKI risk classification reported pooled AUCs of 0.82 
for internal validation and 0.78 for external validation, 
highlighting logistic regression, neural networks, and 
XGBoost as prevalent approaches (18). Meta-analysis 
of novel biomarkers combined with ML further 
improved early detection, with urinary neutrophil 
gelatinase-associated lipocalin and tissue inhibitor 
of metalloproteinases-2 × insulin-like growth factor-
binding protein-7 (TIMP-2×IGFBP7) integrated into AI 
algorithms, yielding diagnostic odds ratios >13 (19).

Pediatric and specialized cohorts
Explainable ML models in critically ill pediatric cohorts 
achieved robust AKI prediction while providing 
interpretability through feature importance, facilitating 
clinician trust (20). In liver transplantation, serum 
cystatin C-based ML models predicted postoperative AKI 
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onset with high discrimination (21). 

AI in prognostication and mortality prediction
Several AI-driven mortality prediction models trained 
on AKI cohorts report superior performance compared 
to traditional scoring systems. Broad learning system and 
elastic net final models both achieved pooled AUCs of 
0.852 for in-hospital mortality prediction (22). In acute 
pancreatitis–associated AKI, XGBoost outperformed 
logistic regression (AUC 0.941 vs. 0.85), indicating 
applicability across subpopulations (23).

AI-enhanced RRT optimization
Timing and modality selection
•	 Early versus late CRRT initiation: Reinforcement 

learning algorithms analyze real-time hemodynamic 
trends and biochemical markers to propose optimal 
windows for initiating CRRT, which may reduce both 
the duration of renal replacement therapy and ICU 
length of stay (24). 

•	 Dose titration: Reinforcement learning models 
dynamically adjust CRRT dosing by continuously 
evaluating solute clearance and hemodynamic stability, 
enabling precise maintenance of targeted fluid balance 
while minimizing risks such as hypotension. This 
approach provides adaptive, personalized therapy that 
responds to the patient’s evolving physiological state, 
surpassing traditional static dosing regimens. Such 
AI-driven dose titration could improve treatment 
efficacy, reduce complications, and enhance overall 
outcomes in the intensive care setting by guiding 
clinical decision-making with real-time data analysis 
(25-27).

Continuous versus intermittent therapies
Deep learning systems leveraging multimodal ICU data 
suggest when to transition between continuous and 
intermittent RRT, balancing solute clearance against 
cardiovascular tolerance (1).

Explainable AI and clinical integration
Interpretability frameworks
•	 Integrated Gradients: Applied to recurrent neural 

networks, this method attributes risk predictions to 
specific variables, enabling clinicians to understand 
model drivers (3).​

•	 Shapley additive explanations: Used in tree-based 
models to quantify individual feature contributions, 
highlighting predictors like serum creatinine 
trajectory, vasopressor dose, and inflammatory 
markers (23).​

Implementation challenges
•	 Data quality and standardization: Heterogeneity 

in EHR systems and missing data impede model 
generalizability (13).​

•	 Workflow integration: Embedding AI tools into ICU 
dashboards requires seamless interoperability, user 
training, and real-time computational resources (28).

•	 Regulatory and ethical considerations: European 
conformity (CE) marking of the NAVOY AKI 
algorithm exemplifies progress toward clinical 
deployment, yet wider regulatory frameworks and 
bias mitigation remain priorities (28).

Future directions and research gaps
•	 Multi-modal data integration: Fusion of imaging, 

genomics, and continuous physiologic signals 
promises richer phenotyping and personalized 
intervention strategies.

•	 Adaptive learning systems: Online learning 
algorithms that update with new data can maintain 
performance despite evolving clinical practices and 
patient populations.

•	 Ethical frameworks: Development of standardized 
guidelines for AI transparency, accountability, and 
patient consent to ensure trust and equity.

•	 Multi-institutional validation: Large-scale prospective 
trials are needed to confirm efficacy and safety in 
diverse ICU settings, including resource-limited 
environments (13).​

Conclusion
AI-driven innovations are transforming critical care 
nephrology by enabling earlier AKI detection, accurate 
prognostication, and optimized RRT. Despite promising 
performance demonstrated in retrospective and proof-of-
concept studies, translation into routine clinical practice 
necessitates robust validation, explainable frameworks, 
and integrated workflows. Collaborative efforts among 
clinicians, data scientists, and regulators will bridge 
intensive care and nephrology, improving patient 
outcomes in critically ill populations.
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